

[FRTSSDS- June 2018] DOI: 10.5281/zenodo.1293873 ISSN 2348 - 8034 Impact Factor- 5.070

# **GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES** A CASE STUDY ON PHYSICO-CHEMICAL CHARACTERISTICS OF EFFLUENT FROM DIFFERENT PHARMACEUTICAL INDUSTRIES

Savita Dubey

Institute of Engineering & Science, IPS Academy, Indore, (M.P.) India

# ABSTRACT

It is important for the industry to develop its own wastewater treatment system before discharging the effluent in order to meet the M.P. State Pollution control Board standards. Reduction of pollutants in the wastewater down to permissible concentrations is necessary for the protection of ground water and the environment. In order to design an appropriate treatment system the characteristic of the wastewater generated need to be found out with reference to the following parameters; pH, chloride, total suspended solids (TSS), suspended solids (SS),total dissolved solids (TDS), Biological oxygen demand (BOD), Chemical oxygen demand (COD).

*Keywords-* pH, chloride, total suspended solids (TSS), suspended solids (SS), total dissolved solids (TDS), Biological oxygen demand (BOD), Chemical oxygen demand (COD).

# I. INTRODUCTION

Industrialization is necessary for the growth of any country. The pulse of any nation is felt by its industrial development. (Junico M. and Shelef G.,1994; Khan and Ahmad ,1992) But with rapid industrialization and urbanization problems of environmental pollution also come into the picture. (Das et al, 2006) Industries pay less attention towards the treatment of effluents and spend very little money on neutralization of effluents (Zboon-Al et al, 2008). These industries are growing rapidly in our country. Looking to the national need we cannot restrict the start of new industries, at the same time government may not allow the increase in pollution. Therefore, the only way to get rid of the problem is to find the ways for minimization the pollution. (Desitti Chaitanyakumar et al, 2011; El-Gohary et al,1995).

The wastewater discharged is highly polluted in nature with highly variable characteristics such as temperature, color, total solid, biological oxygen demand, chemical oxygen demand. (Balasubramian S et al, 1999; Buzzini AP and Pires EC, 2007) Due to highly polluting nature, it is not possible to discharge treated and untreated waste either into water course on land without causing great damage. Thus these wastes create a great problem for environmental engineers. (Desitti Chaitanyakumar et al, 2011; Krishanamoorthi S et al, 2009). Different types of pollutants are present in the wastewater generated during the manufacturing process of different drugs. (Kapur, A., Kansal et al, 1999; Kolhe A.S. and V. P. Pawar, 2011) Wastewater treatment at source is required to deal with pollutants, acids and alkalies before they are allowed to get mixed with other effluents. The possibilities of corrosive action on sewers are to be taken into account. (Ernst M, et al, 2007; Hammer MJ, 1996)

#### Necessity of treatment

Considering the pollution effects of the pharmaceutical waste effluent, adequate treatment is essential prior to its disposal. (Garcia, A.,Rivas H. M., Figueroa, J. L. and Monroe A. L.,1995). With the enforcement of pollution control laws, Pharmaceutical industries are required to have the pollution parameters within the limits prescribed by state pollution board. (Hashmi Imran 2005; Haydar S, et al.,2007). The approach followed for evolution of pollution load and treatment involved physico-chemical process, with a perspective of recovery of some products during waste water treatment. (Ammary B, 2007).





## [FRTSSDS- June 2018] DOI: 10.5281/zenodo.1293873 II. MATERIALS AND METHOD

### Collection of samples

Polythene bottles of 2.5 L and 2.0 L were used to collect the grab water samples (number of samples collected). The bottles were thoroughly cleaned with hydrochloric acid, washed with tape water to render free of acid, washed with distilled water twice, again rinsed with the water sample to be collected and then filled up the bottle with the sample leaving only a small air gap at the top. The sample bottles were Stoppard and sealed with paraffin wax. (Junico M. et.al., 1994; Kapur, A., et.al, 1999; Kolhe A.S. et.al 2011)

#### Experimental

Untreated effluent

The samples for our study were collected from tube wells inside the factory premises and also from inside the plant. Samples were collected manually in two to four liter polythene jerry canes for physicochemical studies 2-3 liters volumes of the samples were taken.(Balasubramian S, et.al 1999).

All the parameters were analyzed in our laboratory except pH, which were noted at the site. All the observations are recorded in the tables.

# III. RESULTS AND DISCUSSION

We take the comparison units. It is seen that the pH of the untreated effluents of the entire unit is acidic. It is clear from the data that chloride, BOD and COD, total solid concentration of these parameters is minimum in Nicholas and maximum in Syncom during the study period. Here the reason is quite obvious and the observations prove that the equipments technology and process used in Nicholas is much superior to those used in rest of the units.

| Table [1]. Tesud of m/s (pcd taboratories (unireated efficient) |               |               |               |                |            |            |  |
|-----------------------------------------------------------------|---------------|---------------|---------------|----------------|------------|------------|--|
| STANDARD                                                        | JAN           | MAR           | MAY           | JULY           | SEPT       | NOV        |  |
| Color                                                           | Dark<br>Black | Dark<br>Black | Dark<br>Black | Light<br>Black | Black      | Black      |  |
| Appearance                                                      | Turbid        | Turbid        | Turbid        | Turbid         | Turbid     | Turbid     |  |
| Odour                                                           | Unpleasant    | Unpleasant    | Unpleasant    | Unpleasant     | Unpleasant | Unpleasant |  |
| pН                                                              | 3.8           | 4.1           | 4.2           | 5.4            | 5.2        | 5.0        |  |
| Total solid                                                     | 10297         | 11045         | 11527         | 9364           | 9940       | 10660      |  |
| Dissolved<br>solids                                             | 9112          | 9710          | 10005         | 8256           | 8795       | 9420       |  |
| Suspended<br>solid                                              | 1185          | 1335          | 1412          | 1108           | 1145       | 1240       |  |
| Chloride                                                        | 2605          | 2890          | 3012          | 2210           | 2322       | 2715       |  |
| BOD                                                             | 5865          | 6125          | 6365          | 5580           | 5729       | 5990       |  |
| COD                                                             | 23899         | 24943         | 25575         | 22980          | 23485      | 24380      |  |

#### Table [1]. result of m/s ipca laboratories (untreated effluent)



RESEARCHERID



# [FRTSSDS- June 2018] DOI: 10.5281/zenodo.1293873

ISSN 2348 - 8034 Impact Factor- 5.070

 Table [2].result of m/s syncom formulation india limited (untreated effluent)

| STANDARD            | JAN           | MAR           | MAY        | JULY             | SEPT       | NOV        |
|---------------------|---------------|---------------|------------|------------------|------------|------------|
| Color               | Dark<br>Black | Dark<br>Black | Blackish   | Dark<br>Blackish | Blackish   | Blackish   |
| Appearance          | Turbid        | Turbid        | Turbid     | Turbid           | Turbid     | Turbid     |
| Odour               | Unpleasant    | Unpleasant    | Unpleasant | Unpleasant       | Unpleasant | Unpleasant |
| pH                  | 4.6           | 4.2           | 4.0        | 5.4              | 5.2        | 5.0        |
| Total solid         | 13232         | 14188         | 14625      | 12063            | 12889      | 13655      |
| Dissolved<br>solids | 10850         | 115500        | 11884      | 9915             | 10625      | 11145      |
| Suspended<br>solid  | 2382          | 2638          | 2741       | 2148             | 2264       | 2510       |
| Chloride            | 3990          | 4180          | 4250       | 3750             | 3800       | 4054       |
| BOD                 | 7500          | 8110          | 8425       | 6750             | 7150       | 7835       |
| COD                 | 31080         | 32725         | 33914      | 29615            | 30022      | 32016      |

 Table [3]. result of m/s biochem synergy (untreated effluent)

| STANDARD            | JAN        | MAR        | MAY        | JULY           | SEPT        | NOV        |
|---------------------|------------|------------|------------|----------------|-------------|------------|
| Color               | Black      | Black      | Black      | Light<br>Black | Light Black | Black      |
| Appearance          | Turbid     | Turbid     | Turbid     | Turbid         | Turbid      | Turbid     |
| Odour               | Unpleasant | Unpleasant | Unpleasant | Unpleasant     | Unpleasant  | Unpleasant |
| pН                  | 4.6        | 4.2        | 4.1        | 5.4            | 5.2         | 5.0        |
| Total solid         | 6950       | 7294       | 7586       | 6495           | 6706        | 7242       |
| Dissolved<br>solids | 6175       | 6401       | 6599       | 5857           | 6032        | 6298       |
| Suspended<br>solid  | 775        | 893        | 987        | 638            | 674         | 844        |
| Chloride            | 3167       | 3392       | 3427       | 3017           | 3097        | 3285       |
| BOD                 | 1372       | 1497       | 1545       | 1283           | 1310        | 1433       |
| COD                 | 9310       | 9987       | 10427      | 8529           | 8921        | 9622       |



RESEARCHERID

# [FRTSSDS- June 2018] DOI: 10.5281/zenodo.1293873

### ISSN 2348 - 8034 Impact Factor- 5.070

| Table [4]. result of m/s nicholas piramal laboratories limited (untreated effluent) |               |               |            |            |            |             |  |  |
|-------------------------------------------------------------------------------------|---------------|---------------|------------|------------|------------|-------------|--|--|
| STANDARD                                                                            | JAN           | MAR           | MAY        | JULY       | SEPT       | NOV         |  |  |
| Color                                                                               | Dark<br>Black | Dark<br>Black | Blackish   | Black      | Blackish   | Light Black |  |  |
| Appearance                                                                          | Turbid        | Turbid        | Turbid     | Turbid     | Turbid     | Turbid      |  |  |
| Odour                                                                               | Unpleasant    | Unpleasant    | Unpleasant | Unpleasant | Unpleasant | Unpleasant  |  |  |
| рН                                                                                  | 5.6           | 5.2           | 4.4        | 4.2        | 5.1        | 5.2         |  |  |
| Total solid                                                                         | 4992          | 5617          | 5900       | 4471       | 4718       | 5174        |  |  |
| Dissolved<br>solids                                                                 | 4400          | 4882          | 5110       | 4015       | 4208       | 4511        |  |  |
| Suspended<br>solid                                                                  | 592           | 735           | 790        | 456        | 510        | 663         |  |  |
| Chloride                                                                            | 1665          | 1762          | 1806       | 1524       | 1582       | 1717        |  |  |
| BOD                                                                                 | 825           | 912           | 956        | 610        | 775        | 865         |  |  |
| COD                                                                                 | 1963          | 2063          | 2109       | 1812       | 1889       | 1962        |  |  |

# Treated effluent

# Table [5].result of m/s ipca laboratories (treated effluent)

| STANDARD            | JAN        | MAR         | MAY        | JULY       | SEPT       | NOV        |
|---------------------|------------|-------------|------------|------------|------------|------------|
|                     |            |             |            |            | Black      | Black      |
| Color               | Light Blak | Light Black | Blackish   | Black      |            |            |
| Appearance          | Turbid     | Turbid      | Turbid     | Turbid     | Turbid     | Turbid     |
|                     |            |             |            |            |            |            |
| Odour               | Unpleasant | Unpleasant  | Unpleasant | Unpleasant | Unpleasant | Unpleasant |
| pH                  | 7.8        | 7.6         | 8.2        | 8.2        | 7.8        | 8.1        |
| Total solid         | 5934       | 6144        | 6271       | 5658       | 5800       | 6053       |
| Dissolved<br>solids | 5024       | 5195        | 5296       | 4810       | 4920       | 5105       |
| Suspended<br>solid  | 910        | 949         | 975        | 848        | 880        | 948        |
| Chloride            | 1274       | 1325        | 1356       | 1225       | 1250       | 1295       |
| BOD                 | 685        | 765         | 790        | 580        | 615        | 710        |
| COD                 | 1298       | 1486        | 1592       | 1180       | 1210       | 1375       |





# [FRTSSDS- June 2018] DOI: 10.5281/zenodo.1293873

# ISSN 2348 - 8034 Impact Factor- 5.070

| STANDARD            | JAN        | MAR        | MAY        | JULY           | SEPT        | NOV        |
|---------------------|------------|------------|------------|----------------|-------------|------------|
| Color               | Light grey | Light grey | Light grey | Dirty<br>white | Dirty white | Greyish    |
| Appearance          | Turbid     | Turbid     | Turbid     | Turbid         | Turbid      | Turbid     |
| Odour               | Unpleasant | Unpleasant | Unpleasant | Unpleasant     | Unpleasant  | Unpleasant |
| pН                  | 8.2        | 8.4        | 8.8        | 7.6            | 7.7         | 8.0        |
| Total solid         | 7859       | 8224       | 8421       | 7372           | 7688        | 8025       |
| Dissolved<br>solids | 6684       | 6872       | 7112       | 6308           | 6556        | 8025       |
| Suspended<br>solid  | 1175       | 1252       | 1309       | 1064           | 1132        | 1210       |
| Chloride            | 1665       | 1762       | 1806       | 1524           | 1582        | 1712       |
| BOD                 | 964        | 1062       | 1110       | 882            | 915         | 1015       |
| COD                 | 1963       | 2063       | 2109       | 1812           | 1889        | 1962       |

## Table [6]. result of m/s syncom formulation india limited (treated effluent)

## Table [7]. result of m/s biochem synergy (treated effluent)

| STANDARD            | JAN         | MAR         | MAY         | JULY       | SEPT       | NOV        |
|---------------------|-------------|-------------|-------------|------------|------------|------------|
| Color               | Light Black | Light Black | Light Black | Greyish    | Greyish    | Blackish   |
| Appearance          | Turbid      | Turbid      | Turbid      | Turbid     | Turbid     | Turbid     |
| Odour               | Unpleasant  | Unpleasant  | Unpleasant  | Unpleasant | Unpleasant | Unpleasant |
| pH                  | 8.2         | 8.4         | 8.8         | 7.8        | 8.0        | 8.1        |
| Total solid         | 3840        | 4080        | 4160        | 3584       | 3682       | 3960       |
| Dissolved<br>solids | 3095        | 3285        | 3340        | 2899       | 2972       | 3184       |
| Suspended<br>solid  | 745         | 795         | 820         | 685        | 710        | 776        |
| Chloride            | 785         | 855         | 895         | 700        | 745        | 815        |
| BOD                 | 452         | 470         | 492         | 428        | 444        | 465        |
| COD                 | 925         | 1015        | 1083        | 865        | 890        | 981        |



RESEARCHERID

#### [FRTSSDS- June 2018] DOI: 10.5281/zenodo.1293873

#### ISSN 2348 - 8034 Impact Factor- 5.070

|                     | Tubic [6], result of m/s nectories pranat aboratories annuea (ir carea efficient) |            |            |                |             |             |  |  |  |
|---------------------|-----------------------------------------------------------------------------------|------------|------------|----------------|-------------|-------------|--|--|--|
| STANDARD            | JAN                                                                               | MAR        | MAY        | JULY           | SEPT        | NOV         |  |  |  |
| Color               | Dirty<br>white                                                                    | Dirty Grey | Dirty Grey | Dirty<br>white | Dirty white | Dirty white |  |  |  |
| Appearance          | Turbid                                                                            | Turbid     | Turbid     | Turbid         | Turbid      | Turbid      |  |  |  |
|                     |                                                                                   |            |            |                |             |             |  |  |  |
| Odour               | Unpleasant                                                                        | Unpleasant | Unpleasant | Unpleasant     | Unpleasant  | Unpleasant  |  |  |  |
| pН                  | 7.5                                                                               | 7.6        | 8.0        | 7.0            | 7.2         | 7.4         |  |  |  |
| Total solid         | 3632                                                                              | 3987       | 4148       | 3247           | 3449        | 3733        |  |  |  |
| Dissolved<br>solids | 3132                                                                              | 3452       | 3592       | 2799           | 2884        | 3213        |  |  |  |
| Suspended<br>solid  | 500                                                                               | 535        | 556        | 448            | 465         | 520         |  |  |  |
| Chloride            | 512                                                                               | 558        | 575        | 470            | 495         | 545         |  |  |  |
| BOD                 | 65                                                                                | 95         | 120        | 35             | 58          | 75          |  |  |  |
| COD                 | 585                                                                               | 565        | 690        | 480            | 575         | 610         |  |  |  |

 Table [8]. result of m/s nicholas piramal laboratories limited (treated effluent)

Note: All the parameters except pH are in mg/l.

I have seen that even after the treatment the water of the effluent is not fully free from various pollutants and it can be hardly used for irrigation purposes. My observation has shown that the effluents of all these industries are highly polluted; the results obtained are higher as compared to permissible limits, so it cannot be disposed directly into the surrounding areas. In such circumstances it is feared that this water after treatment can and may reduce the fertility of the soil and damage some of the crops

# **IV. CONCLUSIONS**

We observe from the four pharmaceutical industries that on one side they have produced the drugs which are very useful for mankind. Whereas on the other side they have not taken much care to treat pollution inside the plant. The pollution present in factory has not be reduced much spite of their sincere affords therefore it is the moral duty of manufactures to save the surrounding area from water and air pollution. Many ways and means are available for minimization of pollution pharmaceutical industries they should employ modern technology to prevent pollution in their plants.

### REFERENCES

- [1] Ammary B (2007) Wastewater reuse in Jordan: Present status and future plans, Desalination J. Volume 211, Issues 1-3, 10, pp. 164-176.
- [2] Balasubramian S, Pugalenthi V, Anuradha K, Chakradhar SJ (1999) Characterization of tannery effluents and the correlation between TDS, BOD and COD. Environ. Sci. Health, 34: 4-16.
- [3] Buzzini AP and Pires EC (2007) Evaluation of an up flow anaerobic sludge blanket reactor with partial recirculation of effluent used to treat wastewaters from pulp and paper plants. Bioresource Technology, 98, 1838-1848.
- [4] Das P, Das B, Khan YSA (2006) Environmental Assessment of Tannery Wastes from Chittagong, Bangladesh. Asian J. Water Environ. Pollut., 3(1): 83-90
- [5] Desitti Chaitanyakumar, Syeda Azeem Unnisa, Bhupatthi Rao ,G Vasanth Kumar (2011), Efficiency Assessment of Combined Treatment Technologies: A Case Study of Charminar Brewery Wastewater Treatment Plant, Indian Journal of Fundamental and Applied Life Sciences, 1 (2), 138-145.
- [6] El-Gohary, F. A., Abou-Eleha, S. I. and Aly H. I. (1995). Evaluation of biological technologies for waste water treatment in the pharmaceutical industry. Water Science and Technology.32 (11): 13-20



216



### [FRTSSDS- June 2018]

#### DOI: 10.5281/zenodo.1293873

- [7] Ernst M, Sperlich A, Zheng X, Ganb Y, Hub J, Zhao X, Wang J, JekelM (2007). An integrated wastewater treatment and reuse concept forthe Olympic Park 2008 Beijing. Desalination J. 202: 3.
- [8] Hammer MJ (1996) Water and wastewater techno .Third edition Prentice -hall. Inc.
- [9] Garcia, A., Rivas H. M., Figueroa, J. L. and Monroe A. L. (1995) Case history: Pharmaceutical Wastewater treatment plant upgrade, Smith Kline Beecham Pharmaceuticals Company., Desalination 102(1-3): 255-263.
- [10]Hashmi Imran (2005) Wastewater monitoring of pharmaceutical industry: treatment and reuse options. Electron. J. Environ. Agric. Food Chem., 4 (4), 994-1004.
- [11]Haydar S, Aziz JA, Ahmad MS (2007) Biological Treatment of Tannery Wastewater Using Activated Sludge Process. Pak. J. Eng. Appl. Sci., 1: 61-66.
- [12]Junico M. and Shelef G. (1994) Design operation and performance of stabilization reservoir for waste water irrigation in Israel. Wat. Res. 28: 175-186
- [13]Kapur, A., Kansal, A., Prasad, R. K. and Gupta, S (1999) Performance evaluation of Sewage Treatment
- [14]Plant and Sludge bio- methanation, Indian Journal of Environmental Protection, 19.96 100.
- [15]Kolhe A.S. and V. P. Pawar (2011) Physico-chemical analysis of effluents from dairy industry, Recent Research in Science and Technology, 3(5): 29-32.
- [16]Khan M. A. and Ahmad S. I. (1992) Performance evaluation of pilot waste stabilization ponds in subtropical region, Wat. Sci. Tech. 26: 1717-1728.
- [17]Krishanamoorthi S, Sivakumar V, Saravanan K, Prabhu S (2009) Treatment and Reuse of Tannery Waste Water by Embedded System. Modern Appl. Sci., 3(1): 129-134.
- [18]Zboon-Al, Kamel, Ananzeh-Al, Nada, (2008) Performance of wastewater treatment plants in Jordan and suitability for reuse, Afri. J of Biotech. 7 (15), 2621-2629.





### ISSN 2348 – 8034 Impact Factor- 5.070